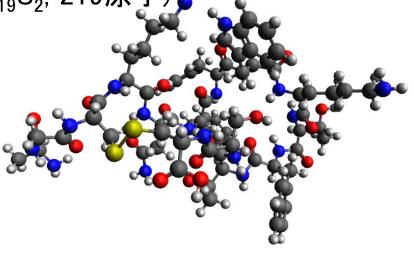
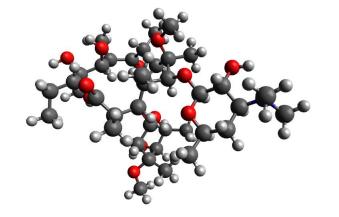
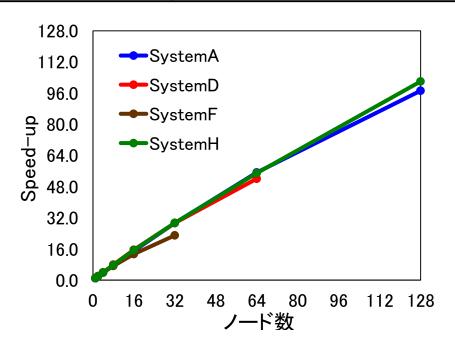
大規模並列量子化学計算プログラム SMASHのFOCUSスパコンでの性能


石村 和也 (分子科学研究所 ポスト「京」重点課題5) 第1版(2018/10/29作成)

FOCUSスパコンでのSMASHの測定

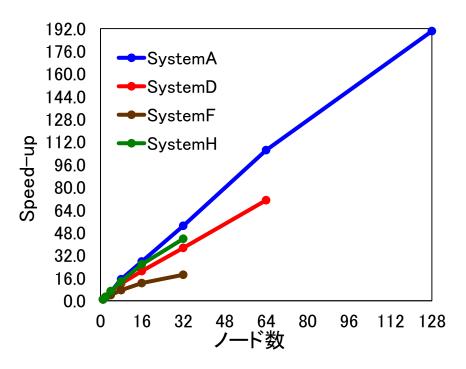

• DFT(B3LYP)構造最適化計算1サイクル

分子: Somatostatin (C₇₆H₁₀₄N₁₈O₁₉S₂, 219原子)


• 基底関数:6-31G*(1826次元)

- MP2構造最適化計算1サイクル
 - 分子: Clarithromycin (C₃₈H₆₉NO₁₃, 121原子)
 - 基底関数:6-31G*(866次元)

DFT構造最適化計算1サイクル(219原子)



DFT構造最適化計算1サイクルの実行時間(秒)

ノード数	1	2	4	8	16	32	64	128
SystemA	10904.3	5604.9	2848.9	1429.3	724.4	372.5	197.4	112.1
SystemD	4073.9	2023.1	1017.3	510.1	260.8	139.1	78.3	
SystemF	1649.5	857.8	426.5	226.5	123.3	71.7		
SystemH	9142.2	4612.6	2319.1	1171.4	593.5	311.4	166.3	89.6

- ✓ どのシステムでもノード数が増えれば増えるほど速くなる
- ✓ 200原子系のDFT構造最適化計算は、1サイクル数分で実行可能

MP2構造最適化計算1サイクル(121原子)

MP2構造最適化計算1サイクルの実行時間(秒)

ノード数	1	2	4	8	16	32	64	128
SystemA	18733.5	7123.8	2921.8	1230.4	677.2	354.3	176.3	98.5
SystemD	6339.1	2354.3	991.3	522.9	303.1	169.9	89.4	
SystemF	2312.7	921.4	574.0	307.4	185.4	125.8		
SystemH	14063.5	5033.9	2044.0	1031.6	547.7	321.6		

- ✓ ノード数が増えると総メモリ量が増加するため、使ったノード数以上のSpeed-upになる場合がある
- ✓ 100原子系のMP2構造最適化計算は、1サイクル数分で実行可能